fertilized egg, and which parent has hotter alternative prospects. As I said before, neither parent makes a conscious calculation; the actions of each parent are instead programmed genetically by natural selection into the anatomy and instincts of their sex. In many animal species the female backs down and becomes sole parent while the male deserts, but in other species the male assumes responsibility and the female deserts, and in still other species both parents assume shared responsibility. Those varying outcomes depend on three interrelated sets of factors whose differences between the sexes vary among species: investment in the already fertilized embryo or egg; alternative opportunities that would be foreclosed by further care of the already fertilized embryo or egg; and confidence in the paternity or maternity of the embryo or egg.
All of us know from experience that we are much more reluctant to walk away from an ongoing enterprise in which we have invested a lot than from one in which we have invested only a little. That's true of our investments in human relationships, in business projects, or in the stock market. It's true regardless of whether our investment is in the form of money, time, or effort. We lightly end a relationship that turns bad on the first date, and we stop trying to construct from parts a cheap toy when we hit a snag within a few minutes. But we agonize over ending a twenty-five-year marriage or an expensive house remodeling.
The same principle applies to parental investment in potential offspring. Even at the moment when an egg is fertilized by a sperm, the resulting fertilized embryo generally represents a greater investment for the female than for the male, because in most animal species the egg is much larger than the sperm. While both eggs and sperm contain chromosomes, the egg in addition must contain enough nutrients and metabolic machinery to support the embryo's further development for some time, at least until the embryo can start feeding itself. Sperm, in contrast, need contain only a flagellar motor and sufficient energy to drive that motor and support swimming for at most a few days. As a result, a mature human egg has roughly one million times the mass of the sperm that fertilizes it; the corresponding factor for kiwis is one million billion. Hence a fertilized embryo, viewed simply as an early-stage construction project, represents an utterly trivial investment of its father's body mass compared to its mother's. But that doesn't mean that the female has automatically lost the game of chicken before the moment of conception. Along with the one sperm that fertilized the egg, the male may have produced several hundred million other sperm in the ejaculate, so that his total investment may be not dissimilar to the female's.
The act of fertilizing an egg is described as either internal or external, depending on whether it takes place inside or outside the female's body. External fertilization characterizes most species of fish and amphibia. For example, in most fish species a female and a nearby male simultaneously discharge their eggs and sperm into the water, where fertilization occurs. With external fertilization, the female's obligate investment ends at the moment she extrudes the eggs. The embryos may then be left to float away and fend for themselves without parental care, or they may receive care from one parent, depending on the species.
More familiar to humans is internal fertilization, the male's injection of sperm (for example, via an intromittive penis) into the female's body. What happens next in most species is that the female does not immediately extrude the embryos but retains them in her body for a period of development until they are closer to the stage when they can survive by themselves. The offspring may eventually be packaged for release within a protective eggshell, together with an energy supply in the form of yolk-as in all birds, many reptiles, and monotreme