“Mr. Ford was always for a light car because it could cut ringsaround the big cars,” John Wandersee explained, so he demanded that the new Model T be strong and durable in construction, yet lightweight. Vanadium steel proved ideal for this task. The material became essential for the new prototype, although its adoption came about rather differently from the fanciful, dramatic tale of the Palm Beach race often told by Ford. 8
The actual story was more mundane. Information, some of it published, had been circulating among engineers for several years about a new kind of heat-treated steel incorporating vanadium; this malleable alloy added tensile strength. When J. Kent Smith, a noted English metallurgist and pioneer in making this material, came to Detroit in 1906, he met with Ford and Harold Wills, and demonstrated the alloy's unique qualities. “Immediately Mr. Ford sensed the great value of this for use in the motor car,” Charles Sorensen noted. “After the first time he saw Mr. Smith, he said to me, ‘Charlie, this means an entirely new design requirement. We can get a better and lighter and cheaper car as a result of it.’ ” 9
Wills, the company's chief engineer, was particularly enthusiastic about the possibilities of vanadium steel alloy. He began to oversee its testing, first at various steel mills outside Detroit and then at a new laboratory set up in the Piquette Avenue plant. He planned on hiring a college-trained metallurgist to head the project, but Ford insisted on appointing Wandersee, who had first come to the company as a floor sweeper and then rose through the ranks to become a mechanic and then an engineer. Ford had little use for university graduates, preferring men who proved their value on the basis of talent and achievement. So Wandersee spent several months in training at the United Alloy Steel Laboratory, learned how to manage a lab, and became the company's expert on metallurgy and vanadium steel. 10
Ford sang the praises of the new steel alloy in his 1907
Harper's Weekly
article. He claimed that vanadium “imparts qualities to steel which are little less than magical,” creating “a metal of such toughness and tenacity as would successfully resist the ravages of vibration and fatigue.” He claimed that with vanadium steel “the strength of an automobile axle or a crankshaft may be doubled without increasing the dimensions or weight, and the working capacity and shock-resisting qualities of that member in actual usage multiplied many times.” These characteristics were vital to Ford's goal of increased strength and light weight. 11
With the finalization of the vanadium-steel components, the time arrived for the last step in the development process: road tests. When new parts were added to the Model T, it was taken out for examination under road conditions. Then the handmade model was returned to the development room at the Piquette Avenue factory, torn down, inspected for wear in engine and body parts, and reassembled for more tests. Ford closely monitoredthe proceedings. His office stood next to the experimental room, and he spent hours every day checking on test results and inquiring about specific achievements and problems. On numerous occasions, he tested the Model T prototype himself. “He went out with us many a time,” related one of the mechanics on the team. “Mr. Ford wouldn't let anything go out of the shop unless he was satisfied that it was nearly perfect as you could make it. He wanted it right.” 12
After nearly two years of development and testing, the car that emerged from the brain of Henry Ford and the hands of his engineers met the stringent requirements of his “universal car.” The Model T was a utilitarian, inexpensive, lightweight, and durable automobile that offered many attractive features to the buyer. Boxy in its basic design, this open-top vehicle came in one color—Brewster green in the early years, and then black after 1914—and offered a