has learned to think and work independently, he will surely find his way and besides will better be able to adapt himself to progress and changes than the person whose training principally consists in the acquiring of detailed knowledge.
Finally, I wish to emphasize once more that what has been said here in a somewhat categorical form does not claim to mean more than the personal opinion of a man, which is founded upon nothing but his own personal experience, which he has gathered as a student and as a teacher.
10
The Theory of Relativity
MATHEMATICS DEALS EXCLUSIVELY with the relations of concepts to each other without consideration of their relation to experience. Physics too deals with mathematical concepts; however, these concepts attain physical content only by the clear determination of their relation to the objects of experience. This in particular is the case for the concepts of motion, space, time.
The theory of relativity is that physical theory which is based on a consistent physical interpretation of these three concepts. The name “theory of relativity” is connected with the fact that motion from the point of view of possible experience always appears as the relative motion of one object with respect to another (e.g., of a car with respect to the ground, or the earth with respect to the sun and the fixed stars). Motion is never observable as “motion with respect to space” or, as it has been expressed, as “absolute motion.” The “principle of relativity” in its widest sense is contained in the statement: The totality of physical phenomena is of such a character that it gives no basis for the introduction of the concept of “absolute motion”; or shorter but less precise: There is no absolute motion.
It might seem that our insight would gain little from such a negative statement. In reality, however, it is a strong restriction for the (conceivable) laws of nature. In this sense there exists an analogy between the theory of relativity and thermodynamics. The latter too is based on a negative statement: “There exists no perpetuum mobile.”
The development of the theory of relativity proceeded in two steps, “special theory of relativity” and “general theory of relativity.” The latter presumes the validity of the former as a limiting case and is its consistent continuation.
A. Special theory of relativity.
Physical interpretation of space and time in classical mechanics.
Geometry, from a physical standpoint, is the totality of laws according to which rigid bodies mutually at rest can be placed with respect to each other (e.g., a triangle consists of three rods whose ends touch permanently). It is assumed that with such an interpretation the Euclidean laws are valid. “Space” in this interpretation is in principle an infinite rigid body (or skeleton) to which the position of all other bodies is related (body of reference). Analytic geometry (Descartes) uses as the body of reference, which represents space, three mutually perpendicular rigid rods on which the “coordinates” (x, y, z) of space points are measured in the known manner as perpendicular projections (with the aid of a rigid unit-measure).
Physics deals with “events” in space and time. To each event belongs, besides its place coordinates x, y, z, a time value t. The latter was considered measurable by a clock (ideal periodic process) of negligible spatial extent. This clock C is to be considered at rest at one point of the coordinate system, e.g., at the coordinate origin (x = y = z = O). The time of an event taking place at a point P (x, y, z) is then defined as the time shown on the clock C simultaneously with the event. Here the concept “simultaneous” was assumed as physically meaningful without special definition. This is a lack of exactness which seems harmless only since with the help of light (whose velocity is practically infinite from the point of view of daily experience) the simultaneity of