these extremes: He speculated that L might be about ten thousand years, and that consequently perhaps ten thousand technological civilizations were scattered throughout the Milky Way along with our own. It was probably not coincidental that Drake’s personal estimate rendered the successful detection of alien civilizations still quite difficult but not entirely beyond our capabilities: by his reckoning, only ten million stars would need to be monitored to obtain an eventual detection, though the search could take decades, even centuries.
At the conference’s end, as the guests drank champagne left over from celebrating the news of Calvin’s winning of a Nobel Prize, Struve offered up a toast: “To the value of L . May it prove to be a very large number.”
Drake’s Orchids
A half century later, as we chatted in his living room, Drake expressed his conviction that most of the Green Bank conference’s conclusions were, if anything, too pessimistic. In the last few decades the astrophysical case for a life-friendly universe had grown immensely, he said. Estimates of the rate of star formation had scarcely changed since 1961, but many new studies hinted that “red dwarfs,” stars smaller, cooler, and far more plentiful than ones like our Sun, were more amenable to life than previously believed. Statistical analyses of data from the exoplanet boom suggested that hundreds of billions of planets existed in our galaxy alone, around all varieties of stars; the Green Bank group’s original estimates of planet-bearing stars had been far too low.Inevitably, a good fraction of all those planets would orbit within habitable regions of their systems. Spacecraft visiting Venus and Mars had pieced together tantalizing evidence for oceans of water on both worlds billions of years ago, though the planets’ periods of habitability were brief, and after hundreds of millions of years each had lost its ocean. Meanwhile, researchers had discovered oceans of liquid water in the outer solar system, vast sunless seas beneath the icy crusts of gas giants’ moons like Jupiter’s Europa and Saturn’s Titan. Extrapolating from these results, astronomers speculated that perhaps habitable Earth-like moons orbited some of the warm Jupiter-size worlds already known around other stars. A few even spoke of habitable planets free-floating through the depths of interstellar space after being slingshotted away from their stars. A thick atmospheric blanket of greenhouse gas or an icy crust over a deep ocean could insulate such nomadic worlds and preserve their habitability for billions of years. It could well be that most planets suitable for life in our galaxy don’t orbit stars like our Sun, Drake said. Perhaps they didn’t even orbit stars at all.
He thought the biochemical case had grown, too. A half century of progress in studying the origins of life had found a plethora of possible chemical pathways that could lead to membranes, self-replicating molecules, and other fundamental cellular structures. Multiple lines of evidence indicated that the jump from single-celled to multicellular life had occurred several times on the early Earth in a wide array of organisms, suggesting that the transition was yet another instance of convergent evolution, not a rare fluke. Researchers had discovered microbes flourishing in rock miles beneath the Earth’s surface, in boiling-hot pools of hypersaline acidic water, in the icebox interiors of glaciers, in the deepest, darkest ocean abysses, and even in the radiation-riddled containment chambers of nuclear reactors. Once it arose, life as a planetary phenomenon appeared to be supremely adaptable, prospering in every possible ecological niche and enduring almost any conceivable environmental disruption.
I asked what all that meant for the later terms of his equation.
“We’ve found a truly great number of potentially habitable places, but the number of places where you could expect to find intelligent,