the plane’s chances of getting aloft. But they are determined to fly the aerodrome with Langley’s original engine. Ultimately, only the engine’s carburetor will be changed, and that only because Kleckler can’t understand the workings of the original mechanism well enough to try to restore it. But even the worries about the sufficiency of the motor’s now-diminished power don’t change the high esteem Kleckler and his team hold for Manly’s superb piece of engineering.
The farsightedness of Manly’s engine design is all the more remarkable because so much else had changed since he first built it.While the aerodrome was collecting dust in storage at the Smithsonian Institution, a full-blown technological renaissance had transformed the world. In fact, in the course of human history it would be hard to find a more eventful decade of dramatic technological change than the one Langley’s aerodrome had quietly missed while boxed up in that back room.
The first decade of the twentieth century saw the advent or ascension of a host of revolutionary technologies, including the telephone, electric lighting, and power transmission, the automobile, the radio, the phonograph, and motion pictures. People were staggered by the changes and the world had never seemed so full of possibilities or so unsettled by them. Inventors like Edison, Dow, Deere, Westinghouse, and many others laid the foundation for a new corporate America, which, in that fateful first decade of the twentieth century, quietly began to surpass all other nations in the production of most tangible commodities from coal and chemicals to steel and heavy machinery.
Technology’s latest offerings were cropping up everywhere. Henry Ford’s Model T, introduced in 1908, had begun literally to make over the landscape at home while, by 1914, the opening of the Panama Canal reshaped it on an unimaginably vast continental scale. It seemed as though there was almost nothing that technology couldn’t accomplish. And the field of aviation was as good an example as you could find.
Perhaps nothing illustrated the pace of change better than this single fact: One September day in 1913, just months before the aerodrome’s arrival, a pilot named Lincoln Beachey strode into the Hammondsport plant and asked Curtiss to build him an airplane that could “loop the loop.” Beachey, indisputably the greatest and most fearless stunt aviator of the day, wanted an engine “more thantwice as strong as any of the standard makes,” whose gas flow wouldn’t be cut off by flying upside down. As part of the package, he specified that the plane be built with a special harness that would fasten him in for the stunt. The ever-prudent Curtiss was reluctant, viewing the idea as brazen and needlessly risky. But Beachey, the equivalent of a modern-day rock star or Hollywood celebrity who drew huge and enthusiastic crowds to all his venues, was a hard man to decline.
By Thanksgiving, in a special plane Curtiss built for him, Beachey was astounding huge crowds as the world’s first pilot to fly multiple loops in the air. *
All of which might well lead one to wonder, if Curtiss could so handily build a plane that could loop the loop, why would he ever be so keen to try to rebuild Langley’s ancient and outmoded aerodrome?
The answer, at least on one level, is that, by 1914, the youthful aviation industry was undergoing an identity crisis. The strange, unresolved saga of the aerodrome had left a persistent and nagging question about how the history of the airplane should be told. And with some of the field’s doyens reaching the end of their lives, the question was one of more than idle import. Almost from the time of the aerodrome’s crash, for instance, Alexander Graham Bell had called for resurrecting the aerodrome. Octave Chanute, another of Langley’s contemporaries and one of the earliest aviation researchers in the country declared in 1909, for example: “There is no doubt that if
Madison Layle & Anna Leigh Keaton
Shawn Underhill, Nick Adams