will then be just a few atoms thick, and the conventional approach of shrinking them won’t work.
What then?
We first note that the exponential growth of computing did not start with Moore’s Law on Integrated Circuits. In the accompanying figure, “The Exponential Growth of Computing, 1900-1998,” 19 I plotted forty-nine notable computing machines spanning the twentieth century on an exponential chart, in which the vertical axis represents powers of ten in computer speed per unit cost (as measured in the number of “calculations per second” that can be purchased for $1,000). Each point on the graph represents one of the machines. The first five machines used mechanical technology, followed by three electromechanical (relay based) computers, followed by eleven vacuum-tube machines, followed by twelve machines using discrete transistors. Only the last eighteen computers used integrated circuits.
I then fit a curve to the points called a fourth-order polynomial, which allows for up to four bends. In other words, I did not try to fit a straight line to the points, just the closest fourth-order curve. Yet a straight line is close to what I got. A straight line on an exponential graph means exponential growth. A careful examination of the trend shows that the curve is actually bending slightly upward, indicating a small exponential growth in the rate of exponential growth. This may result from the interaction of two different exponential trends, as I will discuss in chapter 6, “Building New Brains.” Or there may indeed be two levels of exponential growth. Yet even if we take the more conservative view that there is just one level of acceleration, we can see that the exponential growth of computing did not start with Moore’s Law on Integrated Circuits, but dates back to the advent of electrical computing at the beginning of the twentieth century
Mechanical Computing Devices
Electromechanical (Relay Based) Computers
Vacuum-Tube Computers
Discrete Transistor Computers
Integrated Circuit Computers
THE EXPONENTIAL GROWTH OF COMPUTING, 1900-1998
In the 1980s, a number of observers, including Carnegie Mellon University professor Hans Moravec, Nippon Electric Company’s David Waltz, and myself, noticed that computers have been growing exponentially in power, long before the invention of the integrated circuit in 1958 or even the transistor in 1947. 20 The speed and density of computation have been doubling every three years (at the beginning of the twentieth century) to one year (at the end of the twentieth century), regardless of the type of hardware used. Remarkably, this “Exponential Law of Computing” has held true for at least a century, from the mechanical card-based electrical computing technology used in the 1890 U.S. census, to the relay-based computers that cracked the Nazi Enigma code, to the vacuum-tube-based computers of the 1950s, to the transistor-based machines of the 1960s, and to all of the generations of integrated circuits of the past four decades. Computers are about one hundred million times more powerful for the same unit cost than they were a half century ago. If the automobile industry had made as much progress in the past fifty years, a car today would cost a hundredth of a cent and go faster than the speed of light.
As with any phenomenon of exponential growth, the increases are so slow at first as to be virtually unnoticeable. Despite many decades of progress since the first electrical calculating equipment was used in the 1890 census, it was not until the mid-1960s that this phenomenon was even noticed (although Alan Turing had an inkling of it in 1950). Even then, it was appreciated only by a small community of computer engineers and scientists. Today, you have only to scan the personal computer ads—or the toy ads—in your local newspaper to see the dramatic improvements in the price performance of computation that now arrive on a monthly basis.
So Moore’s Law on