the supermarket and bought a piece of calf liver. I glued the receipt from the store onto the first page of a new lab book that I would use to record these experiments. I labeled the book with my name but nothing else, since I had decided to keep my experiments as secret as possible. Pettersson might forbid me to pursue them, if they struck him as an unnecessary distraction from the intensely competitive study of the molecular workings of the immune system that I was supposed to be working on. And, in any case, I wanted to keep all this under wraps to spare myself the ridicule of my lab colleagues in the likely event of failure.
To somewhat imitate ancient Egyptian mummification, I decided to artificially mummify the calf liver by sequestering it in an oven in the lab heated to 50°C. The first effect of this was that the secrecy of my project was compromised. By the second day, the repugnant smell elicited considerable comment, and I had to reveal my project before someone found the liver and disposed of it. Fortunately, the smell decreased as the desiccation progressed, and neither the smell nor word of what was putrefying in the lab made it to my professor.
After a few days, the liver had become hard, blackish-brown, and dry—just like an Egyptian mummy. I proceeded to extract DNA from it, with immediate success. The DNA was in small pieces of a few hundred nucleotide pairs instead of the many thousands of nucleotide pairs typical of DNA extracted from fresh tissue, but there was still lots of it. I felt vindicated. It was not totally ridiculous to think that DNA could survive in a dead tissue—at least for some days or weeks. But what about thousands of years? The obvious next step was to try performing the same stunt with an Egyptian mummy. Now my friendship with Rosti came in handy.
Rosti had been primed by my fretting about Egyptology and molecular biology and was happy to abet my attempt to take Egyptology into the molecular age. The small university museum of which he was the curator had some mummies, and he consented to my request to sample them. He was, of course, not about to let me cut them open and remove their livers. But if a mummy was already unwrapped and its limbs had broken off, Rosti allowed me to remove small pieces of skin or muscle tissue from the area where the mummy had already been broken to try my DNA extraction. Three such mummies were available. As soon as I put the scalpel to what had once been the skin and muscles of a person who existed some 3,000 years ago, I realized that the texture of the tissue was different from that of the calf liver I had baked in the oven. The liver had been hard and a bit tough to slice up, whereas the mummies were brittle and their tissues tended to crumble to brown powder when cut. Undeterred, I submitted them to the same extraction procedure I had performed on the liver. The mummy extracts differed from the liver extract in that they were as brown as the mummies themselves, whereas the liver extract had been as clear as water. And when I looked for DNA in the mummy extracts by letting them migrate in a gel in an electric field and staining them with a dye that would fluoresce pink in ultraviolet light if it had bound to DNA, I saw nothing except the brown stuff, which indeed fluoresced in the ultraviolet light, but blue instead of pink, not what was expected if it was DNA. I repeated this process on the two other mummies. Again, there was no DNA; nothing but an undetermined brown substance had ended up in the extracts that I had hoped would contain DNA. My lab colleagues seemed to be right: How could the fragile DNA molecules survive for thousands of years, when even inside a cell it needed constant repair in order not to decompose?
I hid my secret lab book at the bottom of my desk drawer and returned to the virus that tricked the immune system with its clever little protein—but I could not get the mummies out of my mind. How could it be that others had