astronaut’s watch, would be spread out over an infiniteperiod of time, as seen from the spaceship.
The time interval between the arrival of successive waves at the spaceshipwould get longer and longer, and so the light from the star would appearredder and redder and fainter and fainter. Eventually the star would be so dimthat it could no longer be seen from the spaceship. All that would be left wouldbe a black hole in space. The star would, however, continue to exert the samegravitational force on the spaceship. This is because the star is still visible tothe spaceship, at least in principle. It is just that the light from the surface isso red-shifted by the gravitational field of the star that it cannot be seen.However, the red shift does not affect the gravitational field of the star itself.Thus, the spaceship would continue to orbit the black hole.
The work that Roger Penrose and I did between 1965 and 1970 showed that,according to general relativity, there must be a singularity of infinite densitywithin the black hole. This is rather like the big bang at the beginning of time,only it would be an end of time for the collapsing body and the astronaut. Atthe singularity, the laws of science and our ability to predict the future wouldbreak down. However, any observer who remained outside the black holewould not be affected by this failure of predictability, because neither light norany other signal can reach them from the singularity.
This remarkable fact led Roger Penrose to propose the cosmic censorshiphypothesis, which might be paraphrased as “God abhors a naked singularity.”In other words, the singularities produced by gravitational collapse occur onlyin places like black holes, where they are decently hidden from outside viewby an event horizon. Strictly, this is what is known as the weak cosmic censor-ship hypothesis: protect obervers who remain outside the black hole from theconsequences of the breakdown of predictability that occurs at the singularity.But it does nothing at all for the poor unfortunate astronaut who falls into thehole. Shouldn’t God protect his modesty as well?
There are some solutions of the equations of general relativity in which it ispossible for our astronaut to see a naked singularity. He may be able to avoidhitting the singularity and instead fall through a “worm hole” and come out inanother region of the universe. This would offer great possibilities for travel inspace and time, but unfortunately it seems that the solutions may all be high-ly unstable. The least disturbance, such as the presence of an astronaut, maychange them so that the astronaut cannot see the singularity until he hits itand his time comes to an end. In other words, the singularity always lies in hisfuture and never in his past.
The strong version of the cosmic censorship hypothesis states that in a realis-tic solution, the singularities always lie either entirely in the future, like thesingularities of gravitational collapse, or entirely in the past, like the big bang.It is greatly to be hoped that some version of the censorship hypothesis holds,because close to naked singularities it may be possible to travel into the past.While this would be fine for writers of science fiction, it would mean that noone’s life would ever be safe. Someone might go into the past and kill yourfather or mother before you were conceived.
In a gravitational collapse to form a black hole, the movements would bedammed by the emission of gravitational waves. One would therefore expectthat it would not be too long before the black hole would settle down to a sta-tionary state. It was generally supposed that this final stationary state woulddepend on the details of the body that had collapsed to form the black hole.The black hole might have any shape or size, and its shape might not even befixed, but instead be pulsating.However, in 1967, the study of black holes was revolutionized by a paper writ-ten in Dublin by Werner Israel. Israel