Semiconductor, Fairchild was the only semiconductor company in the Santa Clara Valley, but Texas Instruments had entered the field in Dallas, as had Motorola in Phoenix and Transitron and Raytheon in the Boston area, where a new electronics industry was starting up as MIT finally began to comprehend the new technology. These firms were all racing to refine the production of transistors to the point where they might command the market. So far refinement had not been anybody’s long suit. No tourist dropping by Fairchild, Texas Instruments, Motorola, or Transitron would have had the faintest notion he was looking in on the leading edge of the most advanced of all industries, electronics. The work bays, where the transistors
were produced, looked like slightly sunnier versions of the garment sweatshops of San Francisco’s Chinatown. Here were rows of women hunched over worktables, squinting through microscopes, doing the most tedious and frustrating sort of manual labor, cutting layers of silicon apart with diamond cutters, picking little rectangles of them up with tweezers, trying to attach wires to them, dropping them, rummaging around on the floor to find them again, swearing, muttering, climbing back up to their chairs, rubbing their eyes, squinting back through the microscopes, and driving themselves crazy some more. Depending on how well the silicon or germanium had been cooked and doped, anywhere from 50 to 90 percent of the transistors would turn out to be defective even after all that, and sometimes the good ones would be the ones that fell on the floor and got ruined.
Even for a machine as simple as a radio the individual transistors had to be wired together, by hand, until you ended up with a little panel that looked like a road map of West Virginia. As for a computer—the wires inside a computer were sheer spaghetti.
Noyce had figured out a solution. But fabricating it was another matter. There was something primitive about cutting individual transistors out of sheets of silicon and then wiring them back together in various series. Why not put them all on a single piece of silicon without wires? The problem was that you would also have to carve, etch, coat, and otherwise fabricate the silicon to perform all the accompanying electrical functions as well, the functions ordinarily performed by insulators, rectifiers, resistors, and capacitors. You would have to create an entire electrical system, an entire circuit, on a little wafer or chip.
Noyce realized that he was not the only engineer thinking along these lines, but he had never even heard of Jack Kilby. Kilby was a thirty-six-year-old engineer working for Texas Instruments in Dallas. In January 1959 Noyce made his first detailed notes about a complete solid-state circuit. A month later Texas Instruments announced that Jack Kilby had invented one. Kilby’s integrated circuit, as the invention was called, was made of germanium. Six months later Noyce created a similar integrated circuit made of silicon and using a novel insulating
process developed by Jean Hoerni. Noyce’s silicon device turned out to be more efficient and more practical to produce than Kilby’s and set the standard for the industry. So Noyce became known as the co-inventor of the integrated circuit. Nevertheless, Kilby had unquestionably been first. There was an ironic echo of Shockley here. Strictly speaking, Bardeen and Brattain, not Shockley, had invented the transistor, but Shockley wasn’t bashful about being known as the co-inventor. And now, eleven years later, Noyce wasn’t turning bashful, either.
Noyce knew exactly what he possessed in this integrated circuit, or microchip, as the press would call it. Noyce knew that he had discovered the road to El Dorado.
El Dorado was the vast, still-virgin terrain of electricity. Electricity was already so familiar a part of everyday life, only a few research engineers understood just how young and unexplored the terrain actually was. It
Last Stand in a Dead Land