other vertebrates have ears as well. Sure, it is difficult to sneak up on me, but one hardly needs such a fine-tuned ear and auditory system for a simple alarm.
After some months of contemplation, however, I came to consciously appreciate my ability to use sound to recognize the world and what’s happening around me. I began to notice every tap, clink, rub, burble, and skid. And I noticed how difficult it was for me to do anything without making a sound that gave away what I was doing, like eating from my daughter’s Halloween stash. When you’re next at home and your family is active around you, close your eyes and listen. You will hear sounds such as the plink of a spoon in a coffee mug, the scrape of a drawer opening, or the scratch of crayons on drywall. It will typically take some time before you hear an event that you cannot recognize. In the late 1980s, the psychologist William Gaver played environmental sounds to listeners, and asked them to identify what they heard. He found that people are impressive at this: most are capable, for example, of distinguishing running upstairs from running downstairs. Research following in the tradition of work done by the psychologist William H. Warren in the mid-1980s has shown that people are even able to use sound to sense the shapes and textures of some objects.
Our ears and auditory systems are, then, highly designed for and competent at sensing and recognizing what is happening around us. Our auditory systems are priceless pieces of machinery, just the kind of hardware that cultural evolution shouldn’t let go to waste, perfect for harnessing. In this chapter, I sift through the sounds of nature and distill a host of regularities found there, regularities that apply nearly anywhere—in the jungle, on the tundra, or in a modern city. The idea is that our auditory system, having evolved in the presence of these regularities for hundreds of millions of years, will have evolutionarily “internalized” them; our auditory system will therefore work best when incoming sounds conform to these regularities. I will then ask whether the sounds of speech across human languages tend to respect these regularities. That’s what we expect if language harnesses us.
Over Hear
It can be difficult for students to attract my attention when I am lecturing. My occasional glances in their direction aren’t likely to notice a static arm raised in the standing-room-only lecture hall, and so they are reduced to jumping and gesturing wildly in the hope of catching my eye. And that’s why, whenever possible, I keep the house lights turned off. There are, then, three reasons why my students have trouble visually signaling me: (i) they tend to be behind my head as I write on the chalkboard, (ii) many are occluded by other people, are listening from behind pillars, or are craning their necks out in the hallway, and (iii) they’re literally in the dark.
These three reasons are also the first ones that come to mind for why languages everywhere employ audition (with the secondary exceptions of writing and signed languages for the deaf) rather than vision. We cannot see behind us, through occlusions, or in the dark; but we can hear behind us, through occlusions, and in the dark. In situations where one or more of these—(i), (ii), and (iii) above—apply, vision fails, but audition is ideal. Between me and the students in my course lectures, all three of these conditions apply, and so vision is all but useless as a route to my attention. In such a scenario a student could develop a firsthand appreciation of the value of speech for orienting a listener. And if it weren’t for the fact that I wear headphones blasting Beethoven when I lecture, my students might actually learn this lesson.
The three reasons for vision’s failure mentioned above are good reasons why audition might be favored for language communication, but there is a much more fundamental reason, one that would apply to us even if we
Margaret Weis;David Baldwin