formed the program of every worker in the field of theoretical physics. All physical events were to be traced back to masses subject to Newton’s laws of motion. The law of force simply had to be widened and adapted to the type of event under consideration. Newton himself tried to apply this scheme to optics, assuming light to consist of inert corpuscles. Even the wave theory of light made use of Newton’s law of motion, after it had been applied to the mass of a continuum. Newton’s equations of motion were the sole basis of the kinetic theory of heat, which not only prepared people’s minds for the discovery of the law of the conservation of energy but also led to a theory of gases which has been confirmed down to the last detail, and a more profound view of the nature of the second law of thermodynamics. The development of electricity and magnetism has proceeded right down to our own day along Newtonian lines (electrical and magnetic substance, forces acting at a distance). Even the revolution in electrodynamics and optics brought about by Faraday and Clerk Maxwell, which formed the first great fundamental advance in theoretical physics since Newton, took place entirely under the aegis of Newton’s ideas. Clerk Maxwell, Boltzmann, and Lord Kelvin never wearied of tracing the electromagnetic fields and their reciprocal dynamic actions back to the mechanical action of hypothetical continuously diffused masses. As a result, however, of the hopelessness or at any rate the lack of success of those efforts, a gradual revolution in our fundamental notions has taken place since the end of the nineteenth century; theoretical physics have outgrown the Newtonian frame which gave stability and intellectual guidance to science for nearly two hundred years.
Newton’s fundamental principles were so satisfactory from the logical point of view that the impetus to overhaul them could only spring from the imperious demands of empirical fact. Before I go into this I must insist that Newton himself was better aware of the weaknesses inherent in his intellectual edifice than the generations of scientists which followed him. This fact has always roused my respectful admiration, and I should like therefore to dwell on it for a moment.
I. In spite of the fact that Newton’s ambition to represent his system as necessarily conditioned by experience and to introduce the smallest possible number of concepts not directly referable to empirical objects is everywhere evident, he sets up the concept of absolute space and absolute time, for which he has often been criticized in recent years. But in this point Newton is particularly consistent. He had realized that observable geometrical magnitudes (distances of material points from one another) and their course in time do not completely characterize motion in its physical aspects. He proved this in the famous experiment with the rotating vessel of water. Therefore, in addition to masses and temporally variable distances, there must be something else that determines motion. That “something” he takes to be relation to “absolute space.” He is aware that space must possess a kind of physical reality if his laws of motion are to have any meaning, a reality of the same sort as material points and the intervals between them.
The clear realization of this reveals both Newton’s wisdom and also a weak side to his theory. For the logical structure of the latter would undoubtedly be more satisfactory without this shadowy concept; in that case only things whose relations to perception are perfectly clear (mass-points, distances) would enter into the laws.
II. The introduction of forces acting directly and instantaneously at a distance into the representation of the effects of gravity is not in keeping with the character of most of the processes familiar to us from everyday life. Newton meets this objection by pointing to the fact that his law of reciprocal gravitation is not supposed to be a final