again.
He read everything he could get his hands on about geology and natural history. He began collecting the minerals, shells and fossils that he found in the Pictou County countryside and as far away as the petrified forest of Joggins. He expanded his collection by exchanging specimens with Gesner and other Nova Scotia geologists. At the University of Edinburgh he took courses in geology, taxidermy and the preparation of thin sections of fossil animals and plants for the microscope. Meeting Lyell was another turning point;a friendship blossomed. Afterwards, Dawson went back to university and became British North America’s first trained geologist.
That made him perfect company when Lyell returned to Joggins. There, within the sediment-filled trunks of three ancient trees, they discovered what turned out to be the remains of one of the world’s earliest known reptiles—and the first evidence that land animals had lived during the coal age. Dawson named the discovery
Hylonomus lyelli,
after his mentor. The finding gave Lyell new ammunition against the catastrophists, and solidified his thinking that the planet’s rock layers served as an archive of earth’s evolution. What Lyell saw and concluded in Nova Scotia also had important implications in the greatest question of the day: evolution or creation?
Lyell’s geological theories were already a primary influence on the thinking of Charles Darwin, who had been presented with a copy of the first volume of his
Principles of Geology
before departing on the
Beagle
in 1831. Darwin would lean heavily upon the lessons from Joggins in making the case for evolution in
The Origin of Species:
In other cases we have the plainest evidence in great fossilized trees, still standing upright as they grew, of many long intervals of time and changes of level during the process of deposition, which would not have been suspected, had not the trees been preserved: thus Sir C. Lyell and Dr. Dawson found carboniferous beds 1,400 feet thick in Nova Scotia, with ancient root-bearing strata, one above the other, at no less than sixty-eight different levels. Hence, when the same species occurs at the bottom, middle and top of a formation, the probability is that it has not lived on the same spot during the whole period of deposition, but has disappeared and reappeared, perhaps many times, during the same geological period.
Lyell, in fact, changed Darwin’s whole world view. As he was quoted as saying, “The greatest merit of the Principles was that it altered the whole tone of one’s mind, and therefore that, when seeing a thing never seen by Lyell, one yet saw it through his eyes.”
Since the tide is in, we don’t see any stumps when we walk past the spot where Lyell and Dawson made their world-altering discovery. Otherwise, the scene is pretty much the same as it was 155 years ago. It gives me a familiar buzz. Like most people, I’ve often felt that I was born in the wrong time and place. There was my Alexandre Dumas phase, when I felt I should have had buckler and sword on my hip, a great cape trailing behind me, as I strutted through the rain-slicked streets of Paris. There was a period when I felt terribly cheated because I hadn’t been at Minton’s in New York in the 1940s, to hear Charlie Parker shoot bolts of lightning from his alto sax in situ rather than on vinyl. Nowadays I am more inclined to want to be one of those Victorian amateur scientists, those self-educated, restlessly inquisitive polymaths tromping around in their tweeds, with butterfly nets and microscopes, waiting for the flashes of insight that seem responsible for most of the scientific advances of the age.
Calder, an accomplished documentary photographer, seems to fit easily into the mould of the universal man. So did Lyell, a lawyer by profession but dedicating himself to the great questions of existence, and Gesner—notwithstanding the flawed personality that destined him to die broke and broken—with
Jean-Marie Blas de Robles